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A multidimensional ODE‑based 
model of Alzheimer’s disease 
progression
Matías Nicolás Bossa 1* & Hichem Sahli 1,2

Data-driven Alzheimer’s disease (AD) progression models are useful for clinical prediction, disease 
mechanism understanding, and clinical trial design. Most dynamic models were inspired by the 
amyloid cascade hypothesis and described AD progression as a linear chain of pathological events. 
However, the heterogeneity observed in healthy and sporadic AD populations challenged the amyloid 
hypothesis, and there is a need for more flexible dynamical models that accompany this conceptual 
shift. We present a statistical model of the temporal evolution of biomarkers and cognitive tests 
that allows diverse biomarker paths throughout the disease. The model consists of two elements: a 
multivariate dynamic model of the joint evolution of biomarkers and cognitive tests; and a clinical 
prediction model. The dynamic model uses a system of ordinary differential equations to jointly model 
the rate of change of an individual’s biomarkers and cognitive tests. The clinical prediction model is an 
ordinal logistic model of the diagnostic label. Prognosis and time-to-onset predictions are obtained 
by computing the clinical label probabilities throughout the forecasted biomarker trajectories. The 
proposed dynamical model is interpretable, free of one-dimensional progression hypotheses or 
disease staging paradigms, and can account for the heterogeneous dynamics observed in sporadic 
AD. We developed the model using longitudinal data from the Alzheimer’s Disease Neuroimaging 
Initiative. We illustrate the patterns of biomarker rates of change and the model performance to 
predict the time to conversion from MCI to dementia.

There is an increasing interest in data-driven disease progression models (DPM) of Alzheimer’s disease (AD) 
because of their potential application in disease mechanism understanding, development of clinical prediction 
models of diagnosis and prognosis, and clinical trial design. The rate of change of biomarkers, cognitive tests, and 
clinical measurements, and their relationship with other variables, are estimated to understand the dynamics and 
internal mechanisms of the disease or to test hypotheses1,2. DPMs can also be used as the backbone of clinical 
prediction models, particularly for progressive diseases such as AD, where the clinical condition worsens over 
time. In these cases, clinical prediction models aim to predict the speed of progression and time to symptom 
onset. Moreover, DPMs are helpful for clinical trial design and simulation3. For example, they can help to identify 
the subjects with faster progression, reducing the costs associated with sample size or trial duration.

AD progression models were often inspired by the amyloid cascade hypothesis, crystallised into Jack’s 
hypothetical model of biomarker dynamics, which states that the main AD biomarkers become abnormal in 
a temporally ordered manner4,5. Even though there is a large consensus that A β plays a critical role in AD 
pathophysiology6, growing evidence shows that AD progression comes from a multifactorial interaction of 
processes7 and that all combinations of biomarker abnormalities are frequently present in the cognitively normal 
population8,9. Furthermore, dementia can be caused by multiple pathologies, and AD often co-occurs with them, 
especially after age 6510,11. The A β/tau/neurodegeneration (AT(N)) framework, a biomarker-driven classification 
system that makes no assumptions about the order in which the biomarkers become abnormal, was proposed to 
define and stage AD across its entire spectrum12. More recently, a new conceptual model of AD13 posited a non-
deterministic disease path. According to this model, A β and tau levels interact between them and with genetic 
and environmental factors to increase or reduce the risk of disease progression. These interactions would be 
responsible for the heterogeneity observed in biomarker trajectories and the discrepancies between observations 
and the amyloid cascade hypotheses.

Precise quantitative tools that estimate the biomarker dynamics are needed to shed light on the AD process 
and to build better clinical tools for diagnosis, prognosis and therapy efficacy assessment. These tools must 
accurately predict cognitive decline and determine which combination of biomarkers produces faster disease 
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development. The AT(N) framework and the probabilistic model of AD13 could help to build more interpretable 
and informative models.

Disease progression models of Alzheimer’s disease.  Quantitative models of AD can be divided into 
(i) traditional (regression models), which explore associations between variables; (ii) clinical prediction models, 
aimed for diagnosis and prognosis prediction; and (iii) DPMs. DPMs could be further divided into dynamical 
and event-based models, which assume discrete jumps from normality to abnormality to discover the sequence 
of events. The distinguishing feature of dynamical DPMs is that they allow for quantifying and predicting the 
temporal evolution of the relevant dynamical variables.

The first AD progression models describing long-term trajectories from short-term biomarker observations 
were based on Jack’s model4, i.e., that all subjects follow the same disease progression pattern but with different 
onset times and speeds. Jedynak defined a disease progression score aimed at quantifying disease progression 
and therapeutics’ effectiveness14. Subjects were temporally ordered according to this score, and a parametric 
sigmoid-shaped curve was used to fit the progression of biomarkers. In15, the authors proposed a semi-parametric 
model to determine the population mean of biomarker trajectories and the temporal order of subjects. A similar 
but more flexible model, proposed by16, used Gaussian Process (GP) to model also the individual departures 
from the mean. In general, all these models may suffer from identifiability issues when trained with short-term 
observations because of the need to simultaneously estimate the disease onset times and the biomarker trajec-
tories. Identifiability issues were usually mitigated using mixed-effect modelling to restrict the variance of the 
subject-level parameters.

The first dynamical model that relaxes the unique trajectory hypothesis, allowing an arbitrary combination of 
variables as initial conditions, used a Riemannian framework to transport the mean trajectory to fit the subject’s 
observations17–19. Contrary to the previous works, and similarly to our proposal, it is the basal level of the vari-
ables, not the onset time, which was modelled as the subject-level parameter.

Finally, differential equation models parameterise biomarker velocities instead of biomarker trajectories. They 
are, therefore, implicit models. Some works20,21 tackle the problem of estimating long-term biomarker trajecto-
ries from short-term observations of a single biomarker. A recent work22 used a system of ordinary differential 
equations (ODE) to simulate the effect of amyloid treatments on the disease course.

In this work, we propose a probabilistic DPM with the following characteristics: (i) no assumptions of bio-
marker time-order or typical disease trajectory across individuals; (ii) smooth trajectories of biomarker and 
cognition features implicitly modelled through systems of differential equations; (iii) modelling of covariate 
effect on trajectories; and (iv) the ability to work with arbitrary measurement schedules, missing data, and 
unsynchronised observation times of different biomarkers. Our model has certain similarities with the work 
of17 because all combinations of trajectory basal levels are allowed. But it is also an extension of the differential 
equation models because velocity is the key modelling feature. In particular, our model is conceptually very 
similar to22, the most notable differences being the mathematical implementation and the focus on the causal 
interpretation. Specifically, our model is more straightforward because we model the progression speed directly 
on the observed biomarkers without the need to define latent variables; it is more general because we do not 
prescribe a specific functional form for the velocities; our paper focuses on the prediction of progression, while 
in22, the authors interpret their model from a causal perspective.

An ODE‑based model of disease progression.  We propose a generative (semi)parametric Bayesian 
AD evolution model that admits several progression paths. It has the flexibility to handle heterogeneous acqui-
sition times, follow-up lengths, and missing data. The main idea is to model the rate of change of dynamical 
variables (biomarkers and cognitive tests) as a function of their current values and other relevant variables, i.e., 
using a system of ordinary differential equations (ODE). In this work, we opted for a linear ODE (given by Equa-
tion (1) in the “Method” section). However, other functions can be used to describe the velocity. For example, 
Gaussian Processes were used in23, and a second-order polynomial was used in22.

Our modelling strategy is linked to a significant paradigm shift that abandons the idea of a natural temporal 
order of biomarker abnormalities24. Suppose some events happen earlier in the course of the disease. In that case, 
it should be reflected in the joint distribution of all variables, showing that only a small fraction of the space of 
dynamical variables is occupied. However, it is not an a priori assumption. Figure 1 illustrates the main elements 
of the proposed approach.

Compared to other DPMs16,19, the disease evolution is described here from a different perspective. The fixed 
point in our framework is the value of the biomarkers and not the time at diagnosis. In this work, we raise the 
question “what is the most likely biomarkers evolution and the probability of having a dementia diagnosis at a 
given time in the future given the current state?” and not “what is the most likely combination of biomarkers 
at a given time before and a given time after the dementia diagnosis?”. In our model, we consider the possible 
existence of a surface in the biomarker space corresponding to different combinations of biomarkers levels at 
the time of dementia diagnosis. Therefore, the biomarker levels at a given time before crossing this boundary 
depend on the point at which the patient crosses it (see bottom left panel of Fig. 1). Not learning a canonical 
order of biomarkers allows us to focus on two important tasks: understanding the biomarkers dynamics, and 
clinical prediction. i.e., to model how the current combination of biomarkers levels and covariates affect the rate 
of change of the biomarkers on one side and to predict the risk of developing dementia in the future on the other.
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Figure 1.   Schematic representation of the proposed framework for AD progression modelling. Top left: A 
velocity field describes the biomarker evolution at any point in biomarker space. Velocity direction quantifies 
how each biomarker is changing relative to the others, and velocity magnitude quantifies the mean yearly rate 
of change. Long-term trajectories are obtained starting at a given point in the biomarker space and evolving 
with speed equal to the velocity field evaluated at each point. Top right: The modelled trajectories (blue curves) 
can pass through any point in the biomarker space, contrary to explicit models that describe one-dimensional 
trajectories (black curve). Individual predictions are obtained by fitting the most probable subject trajectory 
(red curve), i.e. the closest trajectory to the observations (green dots) at the correct time points. Only the initial 
value (black star) needs to be estimated. Then the trajectory is computed according to the velocity field. The 
initial value estimation has no serious identifiability issues because it should be close to the observations at the 
corresponding reference time, the left-most green dot in this case, regardless of the velocity field estimation. On 
the contrary, explicit models estimate the time-to-onset or an equivalent parameter that locates the individual’s 
trajectory on the black curve. These two parameters (mean trajectory and individuals’ time-to-onset) are highly 
correlated, giving rise to identifiability issues. Bottom left: A clinical prediction model assigns a clinical label 
probability for any combination of biomarkers and covariates. For a fixed set of covariates, these probabilities 
can be visualised as a heat map. The figure in this panel illustrates the boundaries where the most likely label 
changes, from Cognitively Normal in the bottom left extreme (normal levels in both biomarkers) to Dementia in 
the top right extreme (abnormal levels in both biomarkers). These boundaries depend on the subject covariate 
values. Therefore, they are located at different places for each person. The subject trajectory can be forecasted 
following the velocity field (orange curves). The purple dots represent the predicted biomarker levels at a fixed 
time after the last observation, along with their uncertainty. We can estimate future clinical outcomes using 
these forecasted values as input to the clinical prediction model. Bottom right: Probability for each clinical 
label along the predicted subject trajectory as a function of time. Vertical lines denote the initial time (black), 
observation times (green) and the selected time for prediction given by the purple dots in the bottom left panel 
(purple). Note that in the biomarker space representations (the top panels and the bottom left panel), there is no 
explicit indication of the speed at which the biomarker space is being travelled and of predicted diagnosis label 
change in time. The length of trajectory segments at different regions of the biomarker space is not indicative of 
the relative times needed to traverse them.
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Results
Disease progression.  The disease evolution is encoded in the velocity field. Figure 2 shows velocity field 
maps on different axes only on regions populated with observations, i.e., each point corresponds to an individual 
from the training set. These plots inform qualitatively about the biomarker distribution and the rate of change in 
the population. For completeness, complete trajectories for each subject are shown in the Supplementary Mate-
rials (Fig. S2). However, trajectories are less informative than velocity maps because the length of trajectories 
depends on the follow-up duration, which is different for each subject.

The top panels of Fig. 2 show the velocity in the CSF A β-Tau plane. Note that lower CSF A β is associated 
with higher brain A β load. The younger subjects (top-left) present a more usual AD pattern, which may be 
interpreted as a slow increase of brain A β followed by an increase of Tau. Progression accelerates when both 
amyloid and Tau are high. APOE4 subjects already have large brain amyloid (red dots on the left of top panels), 
which may be explained by an early start of the amyloid accumulation process that begins before the minimum 
age represented in this subset of the ADNI population (mainly above 60 years old). High amyloid levels are not 
necessarily followed by a Tau accumulation, particularly for APOE4 subjects, as reflected by a large proportion of 
subjects with elevated amyloid, low Tau, and low rate of change (see short segment lines at the bottom-left corner 
of both top panels). The pattern seems more heterogeneous for older patients (top-right panel), perhaps due to 
concomitant pathologies producing tau accumulation in this group, expressing a less pure AD physiopathology. 
In addition, there is a strong survivorship bias among the older subjects because the most severe cases already 
died or were not included in the study following the ADNI protocol.

Cognition dynamics are represented in the middle and bottom panels of Fig. 2. Velocities are shown in the 
cognition-Tau plane for different levels of A β . One of the most salient features is that the cognition decline 
accelerates for low CSF A β (bottom-right panel) regardless of Tau status, especially for APOE4ǫ4 subjects. 
However, for intermediate levels of amyloid load, there appears to be a correlation between Tau and the rate of 
cognitive decline. In summary, a fast cognitive decline requires either that both amyloid and Tau are abnormal 
or that CSF A β is very low.

Figure 3 shows the rate of change of the CSF biomarkers and cognition as a function of the CSF A β (left) and 
CSF Tau (right) basal levels, including the age and gender effects. Remarkably, CSF Tau is a precise predictor 
of both Tau and A β progression (top and middle right panels). In contrast, the relation of A β with biomarker 
dynamics is less evident (top and middle left panels). Low CSF A β is correlated with faster progression, but a large 
proportion of subjects with abnormal CSF do not show biomarker change. Only A β presents a plateau effect (see 
Fig. 3 left side of top left panel), a pattern frequently reported1. Regarding cognition (bottom panels), the opposite 
pattern is observed, both CSF biomarkers are correlated with cognition decline, but Tau presents a higher vari-
ability. Figure 3 illustrates how the model could be used for hypothesis testing or rate of change quantification. 
After the research question is formulated, the appropriate parameter could be estimated from these predictions.

Many works have investigated the biomarker dynamics in AD using standard statistical tools. Specifically, 
linear regressions are first computed for each subject to obtain the individual rates of change, followed by another 
regression to estimate how the biomarker rates of change vary with the basal biomarker levels. Contrary to these 
methods, the proposed model can provide the posterior probability distributions of the velocities marginalised 
in the population and conditioned on the biomarker levels and covariates of interest. Our model can be used 
to address specific hypotheses, such as the association between biomarkers levels and their rates of change, in a 
single coherent analysis that accounts for all uncertainty sources. For example, the rate of increase of PET tau and 
PET amyloid has been studied in subjects from different USA and Sweden cohorts25, including, but not exclu-
sively, ADNI participants. They “found that the tau accumulation rate is greater in females and younger amyloid-β
-positive individuals, while amyloid-β accumulation is greater in APOE E4 carriers and older individuals”25. 
A similar pattern can be observed in the middle-left panel of Fig. 3 (there is a higher probability of larger rates 
of tau accumulation among A β positive subjects compared to A β negative subjects, but this difference is more 
significant for younger females), and top panels of Fig. 3 (only younger males and females present the largest 
rate of A β accumulation). Note that the shaded regions represent the posterior probability of velocity values in 
the ADNI dataset. It is not the confidence interval of the mean, which would require further model assumptions.

A more recent work26 on CSF and PET tau of subjects from the USA, not including ADNI participants, 
reported that “higher CSF p-tau181, lower CSF A β42, and higher amyloid PET levels were associated with faster 
rates of tau PET change”26. Even though the tau-related biomarker studied in our work was CSF total Tau, and 
not PET nor phosphorylated Tau, the middle right panel Fig. 3 shows a strikingly linear association between 
tau rates of change and basal levels. Similar patterns were observed in27, where the implications of using fluid 
biomarkers for screening in clinical trials testing tau-targeting therapies were highlighted.

Clinical prediction.  Discrimination.  The discrimination power was high (AUC ∼ 0.92 for AD vs non-
AD), which is not surprising given that CN, MCI, and AD populations are already very different and a small 
proportion changes their diagnosis during the follow-up. The histograms of the predicted probabilities vs the 
ground truth label can be observed in the centre and right panels of Fig. 4. CN are almost perfectly separated 
from AD.

Calibration.  In addition to discrimination, well-calibrated probabilities are another desired feature of clinical 
prediction models. Calibration refers to the agreement between predictions and observed outcomes. It is critical 
in clinical decision-making28, yet it is often overlooked when reporting the results of clinical prediction models.

A standard tool for measuring calibration is given by the calibration plots (or reliability diagrams in Machine 
Learning literature). They consist in plotting the accuracy or proportion of positive outcomes as a function of 
the predicted probability29. A diagonal line indicates that the predictions are perfectly calibrated. For multi-class 
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Figure 2.   Velocity fields. Dots represent mean estimated initial values (i.e., basal level) and lines represent 
velocity (two years of evolution) and their uncertainty (lines are drawn from the posterior distribution). Top: 
CSF A β and Tau biomarkers. The left (right) panel shows younger (older) subjects. The solid vertical line at CSF 
A β = 1100 denotes the usual threshold of abnormality. Dotted vertical black lines show detection limits. A β 
values beyond these limits were estimated based on the censored likelihood, random effect components of the 
model, and consistency with the velocity field. The uncertainty of the initial A β value for these subjects (not 
represented in the figure) is much larger than for the rest. Middle and bottom: Memory trait of ADAS-Cog and 
CSF Tau for different levels of CSF A β . Larger ADAS-Mem denotes larger ADAS-Cog scores and, therefore, 
worse cognitive performance. Cut-offs for CSF A β (shown in the panel titles) corresponds to the 25% , 59% , and 
75% percentiles.
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prediction, the equivalent concepts of confidence-reliability diagram and classwise-reliability diagrams were 
recently defined30. The former is the overall accuracy (proportion of observations for which argmax(p̂) is the 
correct class) for each probability c ∈ [0, 1] (i.e., max(p̂) = c ), and the latter is the accuracy for each class as a 
function of the probability assigned to this class.

The left panel of Fig. 4 shows the confidence- and classwise-reliability diagrams with different colours (top-
left). The shaded regions represent the 95% CI computed as the posterior of a Beta-Binomial model at 0.2 width 
bins (the larger the bins, the smaller the uncertainty but also the resolution). Confidence-reliability is reported 
only for probabilities larger than 0.4 because 1/3 is the minimum attainable value for the maximum probability 
for three classes.

Figure 3.   Biomarker (Top and middle) and cognition (Bottom) rates of change for different biomarker basal 
levels (CSF A β on the left and CSF Tau on the right). Shaded regions show the expected velocity distribution 
(90% HDI posterior probability) for the ADNI population conditioned on CSF A β or CSF Tau.
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Prediction of MCI conversion to AD.  Discrimination of MCI converters from non-converters and time-
to-conversion are more challenging but valuable tasks. In this section, we show the model performance only for 
MCI subjects who did not convert to AD before the first two years of follow-up.

Discrimination accuracy.  To visualise how diagnosis evolves in time for each subject, the left panel of Fig. 5 
shows the probability of AD as a function of time, along with the diagnosis assessment of each MCI subject. 
Probability increased with time for most subjects but at a faster rate for converters (red dots denoting a dementia 
diagnosis). Note that all these subjects had MCI diagnoses exclusively during the first two years of follow-up.

The area under the receiver operating characteristic curve (AUROC) was 86, 84 and 79 for conversion predic-
tion at 3, 5 and 7 years after baseline, respectively (see the centre panel of Fig. 5).

Decision curve analysis.  Decision curve analysis is used to evaluate the utility of clinical predictions through 
net benefit plots31. The risk-benefit ratio of a given medical action could be reduced to a threshold probability 
pth defined as follows. If pth were the true probability of the subject having the disease, then the benefits of taking 
action (e.g., recommend a treatment) when the patient is AD would compensate for the harms of taking action 
when the patient is not AD. The threshold probability is fixed for a given setting (i.e., a disease and a chosen 
medical action). It considers the expected medical improvement and side effects in patients, the harm to healthy 
people, the economic costs, and any other quantifiable factors. The decision curve tells us how better (or worse) 
it is to treat all patients, treat none or treat only the ones with a risk larger than the threshold ( P(AD) > pth ) 

Figure 4.   Clinical predictions in the leave-one-site-out cross-validation experiment on the whole ADNI 
dataset. For each left-out subject, a prediction was estimated at each diagnosis assessment time after the first 
two years of follow-up. Left: Calibration estimation. The dots represent the mean (shaded areas the 95% CI) of 
the confidence- (black) and classwise-reliability diagrams (coloured). Centre: Simplex plot illustrating the mean 
predicted probability assigned to each observation (e.g., the probability corresponding to the points lying on 
the bottom-left corner is 100% AD, 0% MCI and 0% CN). The dot colour indicates the ground truth label. Right: 
Histograms of the predicted AD probability minus the CN probability for each ground truth clinical label.

Figure 5.   Prediction of conversion from MCI to AD as a function of time from baseline in the cross-
validation experiment. Left: Probability assigned to the AD label as a function of time. Dots show the diagnosis 
assessments (the colour denotes the diagnosis), and lines connect assessments of the same subject. Red lines 
are used for subjects with an AD diagnosis at any point during the follow-up (converters), and grey lines are 
used for the rest (non-converters). The blue dots correspond to subjects who reversed their diagnosis to CN 
after being MCI during the first two years. Centre: Accuracy (ROC curves) of the conversion prediction (AD/
non-AD classification) at specific times after baseline. There is at most one diagnosis assessment per subject 
each year, and the number of subjects is reduced for longer follow-ups (see the legend). Right: Decision curves. 
The AD prevalence equals the intersection of the “Treat all” strategy with the “Treat none” strategy. The model 
is useful only for probability thresholds for which the Net Benefit is greater than for the “Treat all” and “Treat 
none” strategies. The probability threshold depends on the risks and benefits of the therapy under consideration.
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according to a prediction model29. The right panel of Fig. 5 shows the net benefit when the model is used to 
predict the probability of conversion to AD a certain number of years after the first visit. The intersection of 
the treat all curves with the y or x-axis reflects the increasing prevalence of the number of converters with time. 
The model showed that prognostic predictions are useful for a wide range of threshold probabilities, up to 50% . 
The leftmost part of the graph corresponds to situations where the harm of not intervening is high, whereas the 
rightmost side corresponds to dangerous interventions with little benefit.

Time to AD conversion.  Another way of evaluating AD conversion prediction performance, and digging deeper 
into model behaviour, is to look at the time to AD conversion. The error is now measured in the time discrep-
ancy between the predicted and observed conversion time. To define the predicted conversion time, we should 
define an AD probability threshold at which we consider the subject has converted. We restricted the analysis to 
the population subset having MCI diagnoses during the first two years of follow-up and at least two CSF meas-
urements in the same period.

The left panel of Fig. 6 shows the predicted time to AD conversion for converters (red) and non-converters 
(blue). On the y-axis is the time of the first AD diagnosis for converters and the maximum follow-up time for 
non-converters. Ideally, the red marks (converters) should lie on the diagonal (black dotted line), which means 
that the model predicted precisely the time to AD conversion. On the other hand, all the blue marks should lie 
on the right of the diagonal, which means that the model did not predict a conversion before the last evidence 
of no conversion. The centre panel shows the error in predicted time to conversion for converters (in red) and 
the difference between predicted time to conversion and max follow-up for non-converters (in blue) as a func-
tion of age. Ideally, the red dots should lie on the horizontal dashed line (no error) and the blue dots above that 
line. The right panel of Fig. 6 shows the cumulative distribution of the time-to-conversion absolute error for the 
52 patients who converted after the first two years of follow-up and had two CSF measurements in this period.

As a rough comparison, time-to-onset was studied for dominantly-inherited AD subjects in23. Contrary to 
our multidimensional model, the authors applied a differential equation model to each biomarker independently. 
Then, a weighted average of the estimated time-to-onset was computed and compared with the actual date of 
onset for a subset of six participants who converted during the follow-up. A root mean squared error of 1.34 years 
was reported for these six subjects. In our experiments, the error in time-to-conversion was higher, less than 2 
years for 66% of the subjects, which is equivalent to 1 std. if the error distribution were Gaussian (see the right 
panel of Fig. 6). However, these numbers must be compared carefully because of many reasons. First, episodic 
and dominantly-inherited AD may have different dynamics. Additionally, many biomarkers (in addition to CSF) 
were used in23, which should help to obtain more precise predictions. The onset time was defined as having non-
zero global CDR in their work, which would correspond to CN to MCI conversion, while we studied conversion 
from MCI to dementia. Finally, the sample sizes are very different, with six subjects in23 and 52 in our work. 
Nevertheless, we remark that the errors in both cases are of the same order of magnitude.

Long‑term trajectories.  We simulated long-term trajectories for a few sets of representative subgroups 
to compare our predictions with those of dynamical15 and event-based models23,32. We selected 4 points in the 
CSF A β-Tau plane: normal, medium-high, and high A β with low Tau (see the top-left, top-right and bottom-left 
panels of Fig. 7, respectively), and medium-high levels of A β with very high Tau (see the bottom-right panel of 
Fig. 7). All the subjects within each subgroup have similar values of CSF biomarkers, but ADAS-Cog, age and 
APOE may differ, giving rise to different trajectories.

Figure 6.   Predicted time to AD conversion for subjects enrolled with an MCI diagnosis who do not convert to 
AD during the first 2 years of follow-up. Left: Time from the first visit to the first AD diagnosis (for converters, 
in red) or maximum follow-up time (for non-converters, in blue) is shown in they-axis. Shaded regions show 
the time when the predicted probability of AD is larger than 30% (left end) up to 70% (right end), with a mark 
denoting the time corresponding with a 50% AD probability. The dots on the right of the figure represent 
subjects whose predicted time of conversion is larger than 10 years. Centre: In red it is shown the time to 
conversion error (predicted minus actual time of conversion) vs age for converters. In blue is shown the 
difference between the predicted age of conversion minus the maximum follow-up time for non-converters. 
Right: Cumulative absolute error distribution for converters.
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A few remarks could be drawn from these patterns: CSF biomarker dynamics are much slower than cogni-
tion (CSF biomarkers do not reach a plateau in any of these panels); clinical diagnosis and cognition onset time 
is highly variable between subjects; CSF Tau increases rapidly only when CSF A β is abnormal, but also there 
must be already high levels of CSF Tau (see the bottom-right panel compared with the bottom-left panel); very 
abnormal levels of CSF A β predict cognitive decline and dementia even in the absence of CSF Tau (see the 
bottom-left panel).

Discussion
We have presented a DPM that helps to overcome three important limitations of previous progression models 
of AD33. Remarkably, the proposed framework dispenses with the assumption of a common disease trajectory, 
allowing to build quantitative models in line with the modern ATX(N) conceptual framework34. Biomarker inde-
pendence is another limiting assumption frequently made. Conversely, the relationship between one biomarker 
level and another biomarker dynamics is the core of the proposed framework. Finally, we consider the effect of 
covariates in the dynamics, i.e., the fixed effects, to be an integral part of our model.

We have illustrated a concrete implementation of a DPM and shown its potential as a tool for AD dynamics 
understanding and clinical prediction. We decided to build the most elementary but still meaningful model of 
AD progression. However, the model could be improved and expanded in many directions, and many questions 
still need to be answered. The most obvious and straightforward steps are the inclusion of more biomarkers, such 

Figure 7.   Simulated long-term evolution for different initial conditions. Subjects for whom the basal CSF 
biomarker levels were within limits described on top of each panel and with a smaller uncertainty were selected. 
Then, trajectories were propagated 10 years backwards and 20 years forwards, taking into account the subject’s 
parameters and the model uncertainty. The y-axis range for each biomarker is indicated in the legend at the 
bottom right panel.
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as MRI features, CSF phosphorylated Tau (p-Tau), Amyloid and Tau PET, FDG PET, and A β in blood, among 
others. Note that the model does not extend trivially with the number of biomarkers because the dimension of the 
matrices describing the velocities increases with them. Adding more biomarkers may require carefully designing 
the matrix (6) structure or replacing the velocity parameterisation with a non-parametric model. Both options 
could be computationally challenging. Additionally, a more exhaustive validation in other datasets different from 
ADNI and following standardised evaluation protocols35 is needed for a fair comparison with other approaches.

The predicted biomarker and cognition dynamics were only described qualitatively because we were not 
trying to answer any particular research question in that regard. The model could be used in different ways for 
quantitative analysis and hypothesis testing. For example, a contrast could be defined, such as the difference 
between the mean velocity of subjects with two sets of characteristics, and the posterior of this difference can be 
explored. Also, subjects included in the model training should be carefully selected to discard the presence of 
confounders or other sources of bias in the parameter estimations.

We have not illustrated applications of the model to clinical trial design, but we identify at least two elements 
that could benefit from DPMs. Given an expected treatment effect on an outcome measure, the model could be 
used to simulate the evolution of a specific population and estimate the expected change and variability of the 
outcome measure on the untreated group. Next, we can optimise the clinical trial costs by selecting the sample 
size or follow-up duration so that the change in the untreated patients is large enough to detect the treatment 
effect. Alternatively, we can change the population characteristics to identify the subgroup where the target out-
come changes the fastest. In22, the authors use their model to simulate the effect of amyloid treatments on the 
disease course. We do not recommend using our model for this type of causal prediction because we did not do 
any causal analysis. We believe, for example, that the fact that subjects with different levels of a given biomarker 
consistently show a different rate of cognitive decline doesn’t mean that externally modifying the process associ-
ated with this biomarker would stop that decline. By simulating the progression of a given population, we are 
not predicting the effect of any treatment or external action, we are forecasting the natural disease progression.

Similar to our model, the normative model described in17–19 also allows modelling trajectories that can pass 
through an arbitrary biomarker combination at a given point in time. However, some major conceptual differ-
ences can be highlighted. The normative model builds a reference trajectory of all the biomarkers. Even though 
the order in which the biomarkers become abnormal can be changed arbitrarily to fit a given subject data, some 
trajectories will be closer and others further from the reference pattern. In our model, no trajectory can be 
considered a reference or template. In17–19, the speed of progression could vary even for two subjects following 
the same trajectory. This flexibility allows an even greater variety of patterns to be accommodated but requires 
repeated measurements to adjust the individual speed. In our model, the speed of progression depends only on 
the biomarker levels and the covariate of interest, allowing predicting progression even with cross-sectional data. 
Furthermore, as we explicitly model the biomarker rates of change as a function of the basal biomarker levels 
and the covariates, we can describe how each variable is associated with the rate of change of each biomarker, 
which are magnitudes of interest in themselves.

Despite these limitations, the proposed framework provides qualitative advantages over previous approaches, 
offering new possibilities, even if the reported performance were not optimal. The rate of change of biomarkers 
and cognitive tests and its relationship with basal biomarker levels, age and genetic information was previously 
extensively studied to unveil the internal mechanisms that drive the disease25,36–39. A common approach is to fit a 
linear or cubic model to data points in the velocity-intercept plane1,2. This is a two-step process because velocities 
are not directly observed, and the uncertainty in the velocity estimations is not propagated to the subsequent 
analyses. These questions could be easily articulated within the proposed model, which provides a testbed that 
estimates velocities and allows statistical inference in a single coherent statistical setting. The advantage is that 
the velocity field produces a principled regularisation consistent with the observed trajectories. That is, the 
observed rate of change should be the same as the velocity of the predicted trajectory, a consistency constraint 
not always considered.

Methods
Statistical setting.  The proposed statistical model comprises three key components: an evolution model of 
an internal state (dynamical) variable, a likelihood function linking the observed biomarkers and cognitive tests 
with the state variable, and an instantaneous clinical prediction model.

Let x(t) be a set of dynamical variables tracking the course of the disease, linked to some biomarkers, cognitive 
tests, or other measurements, and y be a set of relevant covariates that may affect the disease evolution or mani-
festation, such as sex, age, therapeutic interventions, or genetics. The model relies on the assumption that the rate 
of change at a given point in time depends only on the current values of the dynamical variables and covariates. 
There are no assumptions about the number and observation times of each biomarker, neuropsychological and 
clinical assessment. Then, the evolution of the disease can be described by a system of ODEs

The trajectory xs(t) for a given subject s is given by the solution to the ODE (1) with initial condition 
xs(0) = xs0

(1)
dx(t)

dt
= v(x(t), y).

(2)xs(t) = xs0 +

∫ t

0
v(xs(τ ), ys)dτ .
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The velocity field v(·, y) describes the mean disease evolution process for each sub-population (given by the 
levels of the covariate y ), and xs0 is the only subject-level parameter, which determines the complete time evolu-
tion of the dynamical variables for the subject s . Integral (2) can be analytically solved for a few special cases. 
Otherwise, it should be approximated numerically.

Let k identify a biomarker or a cognitive test and Xs
i,k be its observation at time tsi,k . The number and observa-

tion times for each subject s and measurement type k could be different and are indexed with i . A subset of the 
dynamical variable vector, xsk(t) , is linked to this measurement Xs

i,k via some likelihood function,

In other words, xsk(t) is the predicted smooth trajectory, and Xs
i,k the corresponding noisy observations, which 

could belong to spaces with a different number of dimensions. �k are the corresponding likelihood parameters, 
such as noise variance. Lk could be a Gaussian distribution in the case of scalar biomarkers, a more complex 
model for imaging features, or an Item Response Theory (IRT) model for neuropsychological assessments.

Another likelihood function predicts the probability of a diagnostic label in terms of the dynamical variables 
and covariates. It could be anything from simple logistic regression to a more complex model. Let Ds

j be a clinical 
assessment at time tsj,Clin , then the clinical prediction model is given by

The description above is the core of the proposed method. The model may also include a hierarchical structure 
described in Supplementary Material Description S1.2.

Statistical model Alzheimer’s disease.  Following the framework described above, we present a mini-
mal concrete model of Alzheimer’s disease progression. In this work, we included only two biomarkers, CSF 
A β1−42 and CSF total Tau, and one cognitive test, ADAS-Cog. The likelihoods for the CSF biomarkers were 
Gaussian distributions. A right-censored model was used for A β1−42 because the assay has a prescribed upper 
detection limit of 1700 pg/mL. To model cognition, we used a multidimensional Item Response Theory (IRT) 
based scoring methodology40 that extracts latent traits of three cognitive domains: language, memory, and praxis 
(see Supplementary Material, Description S1.1). Therefore, the dynamical variable x is a 5-dimensional vector 
x = [xτ , xAβ , x

Cog
Lang., x

Cog
Mem., x

Cog
Praxis] . Only two covariates were included, y1 = age , and y2 = APOE4 , represented 

as a binary value indicating whether there is at least one copy of the ǫ4 allele of the apolipoprotein-E (APOE) 
gene.

The outcomes for the clinical prediction model were the following three diagnostic labels: Cognitive Normal 
(CN), Mild Cognitive Impaired (MCI) and Dementia (AD). As MCI is regarded as an intermediate phase between 
normal ageing and dementia, we used an ordered logit model for the diagnosis likelihood (4). The predictors were 
the vector of dynamical variables x(t) evaluated at the diagnosis time together with the vector of covariates y.

Dynamical model.  A common assumption of AD DPMs is that all biomarkers and cognitive tests change slowly 
and monotonically at the time scale we are considering (a few decades). This is justified by the biological and 
cognitive processes involved and the frequency of biomarker sampling in long-term studies, which could be 
annual in the best case. For these and for computational reasons, we parameterise v(·) linearly. Note that, in 
more than one dimension, a linear velocity does not necessarily imply  exponential growth. In addition, we used 
a sigmoid shape function to link the dynamical variable x(t) with all the observations, allowing a plateau effect 
at the observation level. An additional advantage of linear velocity fields is that the ODE can be solved explicitly 
using the matrix exponential, reducing the computational burden compared with numerical integration meth-
ods. Specifically,

where V  , Wc and v0 are model parameters.
Even though we are not making causal claims about variables and model parameters, we expect that the 

biomarker velocities are not affected by the cognitive status. We can therefore reduce the number of model 
parameters without compromising the prediction performance by setting to zero some components of the veloc-
ity matrices V  and Wc,

Priors and hyperpriors.  We set a hierarchical prior on the initial values xs0 , with Gaussian hyperpriors and 
weakly informative hyperpriors for the population means and variances. See Supplementary Material Descrip-
tion S1.2 for details.

Experimental setting.  Participants.  The model was fitted to the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, 
led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

(3)Xs
i,k ∼ Lk(x

s
k(t

s
i,k),�k)

(4)Ds
j ∼ LD(x

s(tsj,Clin), y
s ,�D).

(5)v(x, y) =



V +
�

c∈{1,2}

ycWc



x + v0,

(6)V =

(

VCSF 0
VCSF,Cog VCog

)

.
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magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined to measure the progression of mild cognitive impair-
ment (MCI) and early Alzheimer’s disease (AD). All ADNI participants provided written informed consent, and 
study protocols were approved by each local site’s institutional review board. Ethics committees/institutional 
review boards that approved the study are: Albany Medical Center Committee on Research Involving Human 
Subjects Institutional Review Board, Boston University Medical Campus and Boston Medical Center Institu-
tional Review Board, Butler Hospital Institutional Review Board, Cleveland Clinic Institutional Review Board, 
Columbia University Medical Center Institutional Review Board, Duke University Health System Institutional 
Review Board, Emory Institutional Review Board, Georgetown University Institutional Review Board, Health 
Sciences Institutional Review Board, Houston Methodist Institutional Review Board, Howard University Office 
of Regulatory Research Compliance, Icahn School of Medicine at Mount Sinai Program for the Protection of 
Human Subjects, Indiana University Institutional Review Board, Institutional Review Board of Baylor College of 
Medicine, Jewish General Hospital Research Ethics Board, Johns Hopkins Medicine Institutional Review Board, 
Lifespan-Rhode Island Hospital Institutional Review Board, Mayo Clinic Institutional Review Board, Mount Si-
nai Medical Center Institutional Review Board, Nathan Kline Institute for Psychiatric Research & Rockland Psy-
chiatric Center Institutional Review Board, New York University Langone Medical Center School of Medicine 
Institutional Review Board, Northwestern University Institutional Review Board, Oregon Health and Science 
University Institutional Review Board, Partners Human Research Committee Research Ethics, Board Sunny-
brook Health Sciences Centre, Roper St. Francis Healthcare Institutional Review Board, Rush University Medi-
cal Center Institutional Review Board, St. Joseph’s Phoenix Institutional Review Board, Stanford Institutional 
Review Board, The Ohio State University Institutional Review Board, University Hospitals Cleveland Medical 
Center Institutional Review Board, University of Alabama Office of the IRB, University of British Columbia 
Research Ethics Board, University of California Davis Institutional Review Board Administration, University of 
California Los Angeles Office of the Human Research Protection Program, University of California San Diego 
Human Research Protections Program, University of California San Francisco Human Research Protection Pro-
gram, University of Iowa Institutional Review Board, University of Kansas Medical Center Human Subjects 
Committee, University of Kentucky Medical Institutional Review Board, University of Michigan Medical School 
Institutional Review Board, University of Pennsylvania Institutional Review Board, University of Pittsburgh In-
stitutional Review Board, University of Rochester Research Subjects Review Board, University of South Florida 
Institutional Review Board, University of Southern, California Institutional Review Board, UT Southwestern 
Institution Review Board, VA Long Beach Healthcare System Institutional Review Board, Vanderbilt University 
Medical Center Institutional Review Board, Wake Forest School of Medicine Institutional Review Board, Wash-
ington University School of Medicine Institutional Review Board, Western Institutional Review Board, Western 
University Health Sciences Research Ethics Board, and Yale University Institutional Review Board. All methods 
were carried out in accordance with relevant guidelines and regulations. Further information about ADNI, in-
cluding full study protocols, complete inclusion and exclusion criteria, and data collection and availability can 
be found at adni.loni.usc.edu.

All subjects from the ADNI dataset with at least one CSF observation were included, resulting in 1255 par-
ticipants. The baseline characteristics of the population included in the analysis are summarised in Table 1. The 
mean(maximum) number of CSF and ADAS-Cog observations per subject were 1.9(8) and 5.6(16), and the 
mean(maximum) follow-up durations were 1.5(10) and 4(15) years, respectively.

Model fitting and validation.  Inference of model parameters was made using the Stan software41. The Stan code 
is available in Supplementary Material (Fig. S3). Internal-external cross-validation has been used to evaluate the 
model performance using a leave-one-site-out experiment. This validation design is more efficient than split 
sample approaches and a better approximation to external validity than leave-one-out designs42. At each itera-
tion, a site was selected for testing and the rest for training. All the information from the first 2 years of each 
patient belonging to the left-out centre was used to forecast the rest of the follow-up, and the procedure was 
repeated for all centres.

Data Availability
Data used in preparation of this article were obtained from the ADNI database (http://​adni.​loni.​usc.​edu). The 
model code is available in Supplementary Material (Fig. S3).

Table 1.   Counts of subjects and observations by baseline diagnosis and gender. a Age in years, mean (std), 
bnumber of observations.

Diagnosis CN SMC EMCI LMCI AD

Gender F M F M F M F M F M

Subjects 145 139 56 39 125 155 142 221 96 137

Agea 74(6) 75(6) 72(5) 72 (5) 70(8) 72 (7) 72 (7) 75 (7) 73 (8) 76 (8)

CSFb 326 325 86 54 201 252 293 489 147 197

ADAS-Cogb 960 937 244 167 757 937 876 1386 310 425

http://adni.loni.usc.edu
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